Pulse-power integrated-decay technique for the measurement of thermal conductivity

نویسندگان

  • Nachiket M Kharalkar
  • Linda J Hayes
  • Jonathan W Valvano
چکیده

A pulse-power integrated-decay technique for the measurement of thermal conductivity of biological tissues is presented. A self-heated thermistor probe is used to deliver heat and also to measure the temperature response. Three-dimensional finite element analyses are used in this paper to design and optimize the technique. The thermal conductivity measurements from the computer simulations were in close accordance with the experimental data. An empirical calibration process, performed in glycerol and agar-gelled water, provides accurate thermal conductivity measurements. An accuracy analysis evaluated multiple experimental protocols using three solutions of known thermal properties. The results indicate that the thermal decay technique protocol had better accuracy than the constant temperature heating techniques. In vitro measurements demonstrate the variability of tissue thermal conductivity, and the need to perform direct measurements for tissues of interest. The factors that may introduce error in the experimental data are (i) poor thermal/physical contact between the thermistor probe and tissue sample, (ii) water loss from tissue during the course of experimentation and (iii) temperature stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to a laser short-pulse

In this article, the thermoelastic interactions in an isotropic and homogeneous semi-infinite medium with variable thermal conductivity caused by an ultra-short pulsed laser heating based on the linear nonlocal theory of elasticity has been considered. We consider that the thermal conductivity of the material is dependent on the temperature. The surface of the surrounding plane of the medium is...

متن کامل

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Thermal Conductivity of Reduced Graphene Oxide by Pulse Laser in Ethylene Glycol

Graphene oxide was prepared using modified Hummers method. Stable ethylene-glycol nanofluids containing graphene oxide nanosheets were provided. Nd: YAG pulsed laser was applied to prepare reduced nanofluids. Experimental results revealed that thermal conductivity of the nanofluids is increased with increasing the concentration of graphene oxide (GO) in ethylene glycol. The enhancement ratio of...

متن کامل

Model for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique

In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008